

Rational homotopy theory and algebraic models

Jiawei Zhou

Nanchang University

January 20, 2026

Outline

- 1 Introduction of rational homotopy theory and algebraic models
- 2 Sullivan models
- 3 Realization of minimal Sullivan algebras
- 4 Formality of sphere bundles

- 1 Introduction of rational homotopy theory and algebraic models
- 2 Sullivan models
- 3 Realization of minimal Sullivan algebras
- 4 Formality of sphere bundles

Equivalence relations between spaces

Homotopy equivalent

Weak homotopy equivalent

Rational homotopy equivalent

Model: CW complex

Connected by maps preserving $H^*(-; \mathbb{Q})$
(also preserving $\pi_* \otimes \mathbb{Q}$ if 1-connected).

Model: CDGA

Same Euler number

Model: integer

CDGA: commutative differential graded algebra

Commutative means **graded commutative**, i.e.

$$x \cdot y = (-1)^{\deg x \deg y} y \cdot x.$$

Equivalence relations between spaces

Homotopy equivalent

Weak homotopy equivalent

Rational homotopy equivalent

Same Euler number

Model: CW complex

Connected by maps preserving $H^*(-; \mathbb{Q})$
(also preserving $\pi_* \otimes \mathbb{Q}$ if 1-connected).

Model: CDGA

Model: integer

CDGA: commutative differential graded algebra

Commutative means **graded commutative**, i.e.

$$x \cdot y = (-1)^{\deg x \deg y} y \cdot x.$$

Equivalence relations between spaces

Homotopy equivalent

Weak homotopy equivalent

Model: CW complex

Rational homotopy equivalent

Connected by maps preserving $H^*(-; \mathbb{Q})$
(also preserving $\pi_* \otimes \mathbb{Q}$ if 1-connected).

Model: CDGA

Same Euler number

Model: integer

CDGA: commutative differential graded algebra

Commutative means **graded commutative**, i.e.

$$x \cdot y = (-1)^{\deg x \deg y} y \cdot x.$$

Equivalence relations between spaces

Homotopy equivalent

Weak homotopy equivalent

Model: CW complex

Rational homotopy equivalent

Connected by maps preserving $H^*(-; \mathbb{Q})$
(also preserving $\pi_* \otimes \mathbb{Q}$ if 1-connected).

Model: CDGA

Same Euler number

Model: integer

CDGA: commutative differential graded algebra

Commutative means **graded commutative**, i.e.

$$x \cdot y = (-1)^{\deg x \deg y} y \cdot x.$$

Equivalence relations between spaces

Homotopy equivalent

Weak homotopy equivalent

Model: CW complex

Rational homotopy equivalent

Connected by maps preserving $H^*(-; \mathbb{Q})$
(also preserving $\pi_* \otimes \mathbb{Q}$ if 1-connected).

Model: CDGA

Same Euler number

Model: integer

CDGA: commutative differential graded algebra

Commutative means **graded commutative**, i.e.

$$x \cdot y = (-1)^{\deg x \deg y} y \cdot x.$$

Model of spaces

Space	Model
Smooth manifold M (ground field \mathbb{R})	$\Omega^*(M)$
General topological space X	$A_{PL}(X)$

$\Omega^*(M)$: The CDGA of differential forms on M .

$A_{PL}(X)$: The CDGA of **polynomial differential forms**, which are simplicial maps $S_*(X) \rightarrow A_{PL}$.

$S_*(X)$: Simplicial set of singular simplicies.

$(A_{PL})_n = \Lambda(t_0, \dots, t_n, dt_0, \dots, dt_n) / \sim$,

where $\deg t_i = 0$, $\deg dt_i = 1$,

$t_0 + \dots + t_n \sim 1$, $dt_0 + \dots + dt_n \sim 0$.

Λ : free (graded) commutative algebra (usually with ground field \mathbb{Q}).

e.g. $\Lambda(t_0, dt_0) = \langle 1, t_0, t_0^2, \dots, dt_0, t_0 dt_0, t_0^2 dt_0, \dots \rangle$

The simplicial set structure on A_{PL} is given by

$$\partial_i : (A_{PL})_n \rightarrow (A_{PL})_{n-1}, \quad t_k \mapsto \begin{cases} t_k, & k < i \\ 0, & k = i \\ t_{k-1}, & k > i \end{cases}$$

$$s_j : (A_{PL})_n \rightarrow (A_{PL})_{n+1}, \quad t_k \mapsto \begin{cases} t_k, & k < j \\ t_k + t_{k+1}, & k = j \\ t_{k+1}, & k > j \end{cases}$$

The CDGA structure on $A_{PL}(X)$ is induced by the CDGA structure on each $(A_{PL})_n$.

Definition of model

For a smooth manifold M , $\Omega^*(M)$ and $A_{PL}(M) \otimes \mathbb{R}$ are **equivalent**, in the sense that they can be connected by **quasi-isomorphisms** (CDGA morphisms inducing isomorphisms on cohomology).

Theorem

There exists a quasi-isomorphism of cochain complexes
 $\oint : A_{PL}(X) \rightarrow C^*(X; \mathbb{Q}).$

Idea of proof.

Taking integrals of polynomial differential forms on suitable simplexes. Moreover, $A_{PL}(X)$ and $C^*(X; \mathbb{Q})$ can be connected by quasi-isomorphisms (non-commutative) DGAs.
(See Section 10(d), (e) of *Rational Homotopy Theory* by Félix, Halperin and Thomas.)

Definition

Any CDGA equivalent to $A_{PL}(X)$ is called a **model** of X .

Definition of model

For a smooth manifold M , $\Omega^*(M)$ and $A_{PL}(M) \otimes \mathbb{R}$ are **equivalent**, in the sense that they can be connected by **quasi-isomorphisms** (CDGA morphisms inducing isomorphisms on cohomology).

Theorem

There exists a quasi-isomorphism of cochain complexes
 $\oint : A_{PL}(X) \rightarrow C^*(X; \mathbb{Q})$.

Idea of proof.

Taking integrals of polynomial differential forms on suitable simplexes. Moreover, $A_{PL}(X)$ and $C^*(X; \mathbb{Q})$ can be connected by quasi-isomorphisms (non-commutative) DGAs.
(See Section 10(d), (e) of *Rational Homotopy Theory* by Félix, Halperin and Thomas.)

Definition

Any CDGA equivalent to $A_{PL}(X)$ is called a **model** of X .

Definition of model

For a smooth manifold M , $\Omega^*(M)$ and $A_{PL}(M) \otimes \mathbb{R}$ are **equivalent**, in the sense that they can be connected by **quasi-isomorphisms** (CDGA morphisms inducing isomorphisms on cohomology).

Theorem

There exists a quasi-isomorphism of cochain complexes
 $\oint : A_{PL}(X) \rightarrow C^*(X; \mathbb{Q})$.

Idea of proof.

Taking integrals of polynomial differential forms on suitable simplexes. Moreover, $A_{PL}(X)$ and $C^*(X; \mathbb{Q})$ can be connected by quasi-isomorphisms (non-commutative) DGAs.
(See Section 10(d), (e) of *Rational Homotopy Theory* by Félix, Halperin and Thomas.)

Definition

Any CDGA equivalent to $A_{PL}(X)$ is called a **model** of X .

- 1 Introduction of rational homotopy theory and algebraic models
- 2 Sullivan models
- 3 Realization of minimal Sullivan algebras
- 4 Formality of sphere bundles

Definition

A **Sullivan algebra** $(\Lambda V, d)$ is a **free commutative graded algebra** ΛV , generated by a graded vector space V of positive degree with a filtration

$$0 = V(-1) \subset V(0) \subset V(1) \subset \dots \subset V(n) \subset \dots \subset V = \bigcup_{n=0}^{\infty} V(n)$$

together with a **differential** d satisfying

$$dV(n) \subset \Lambda V(n-1).$$

If in addition that $dV(n) \subset \Lambda^{\geq 2} V(n-1)$, where RHS is spanned by elements in $\Lambda V(n-1)$ of wordlength at least 2, we say ΛV is **minimal**.

We will write ΛV short for $(\Lambda V, d)$.

Definition

For every *connected* (H^0 is ground field) CDGA A , there exists a **quasi-isomorphism** $\Lambda V \rightarrow A$ from a minimal Sullivan algebra ΛV , unique up to isomorphism. ΛV is called the **minimal Sullivan model** of A , and, if $A = A_{PL}(X)$, is also called the **minimal Sullivan model** of the space X .

Idea of proving existence.

Construct V^n inductively, such that $\Lambda V^{\leq n} \rightarrow A_{PL}(X)$ induces isomorphisms on $H^{\leq n}$ and is injective on H^{n+1} . Here $\Lambda V^{\leq n}$ is the Sullivan algebra generated by $V^{\leq n}$.

Definition

For every *connected* (H^0 is ground field) CDGA A , there exists a **quasi-isomorphism** $\Lambda V \rightarrow A$ from a minimal Sullivan algebra ΛV , unique up to isomorphism. ΛV is called the **minimal Sullivan model** of A , and, if $A = A_{PL}(X)$, is also called the **minimal Sullivan model** of the space X .

Idea of proving existence.

Construct V^n inductively, such that $\Lambda V^{\leq n} \rightarrow A_{PL}(X)$ induces isomorphisms on $H^{\leq n}$ and is injective on H^{n+1} . Here $\Lambda V^{\leq n}$ is the Sullivan algebra generated by $V^{\leq n}$.

Constructing minimal Sullivan model

For simplicity, we assume that X is 1-connected and $H^*(X)$ is of finite type.

- ① Set $V^2 \cong H^2(X)$, and construct a linear map sending V^2 to the representatives in $A_{PL}(X)$.

This induces a CDGA morphism $\Lambda V^2 \rightarrow A_{PL}(X)$, which is isomorphic on H^2 . As $(\Lambda V^2)^3 = 0$, it is injective on H^3 .

- ② Set $C^3 \cong H^3(X)$, $N^3 \cong \ker(H^4(\Lambda V^2) \rightarrow H^4(X))$ under d , and $V^3 = C^3 \oplus N^3$.

Extend $\Lambda V^2 \rightarrow A_{PL}(X)$ to $\Lambda V^{\leq 3}$ by sending C^3 to the representatives and making the image of N^3 compatible with d . This makes that $\Lambda V^{\leq 3} \rightarrow A_{PL}(X)$ is isomorphic on $H^{\leq 3}$ and injective on H^4 .

- ③ Set C^4 satisfying $H^4(\Lambda V^{\leq 3}) \oplus C^4 \cong H^4(X)$, $N^4 \cong \ker(H^5(\Lambda V^{\leq 3}) \rightarrow H^5(X))$ under d , and $V^4 = C^4 \oplus N^4$.

.....

Constructing minimal Sullivan model

For simplicity, we assume that X is 1-connected and $H^*(X)$ is of finite type.

- ① Set $V^2 \cong H^2(X)$, and construct a linear map sending V^2 to the representatives in $A_{PL}(X)$.

This induces a CDGA morphism $\Lambda V^2 \rightarrow A_{PL}(X)$, which is isomorphic on H^2 . As $(\Lambda V^2)^3 = 0$, it is injective on H^3 .

- ② Set $C^3 \cong H^3(X)$, $N^3 \cong \ker(H^4(\Lambda V^2) \rightarrow H^4(X))$ under d , and $V^3 = C^3 \oplus N^3$.

Extend $\Lambda V^2 \rightarrow A_{PL}(X)$ to $\Lambda V^{\leq 3}$ by sending C^3 to the representatives and making the image of N^3 compatible with d . This makes that $\Lambda V^{\leq 3} \rightarrow A_{PL}(X)$ is isomorphic on $H^{\leq 3}$ and injective on H^4 .

- ③ Set C^4 satisfying $H^4(\Lambda V^{\leq 3}) \oplus C^4 \cong H^4(X)$, $N^4 \cong \ker(H^5(\Lambda V^{\leq 3}) \rightarrow H^5(X))$ under d , and $V^4 = C^4 \oplus N^4$.

.....

Constructing minimal Sullivan model

For simplicity, we assume that X is 1-connected and $H^*(X)$ is of finite type.

- ① Set $V^2 \cong H^2(X)$, and construct a linear map sending V^2 to the representatives in $A_{PL}(X)$.

This induces a CDGA morphism $\Lambda V^2 \rightarrow A_{PL}(X)$, which is isomorphic on H^2 . As $(\Lambda V^2)^3 = 0$, it is injective on H^3 .

- ② Set $C^3 \cong H^3(X)$, $N^3 \cong \ker(H^4(\Lambda V^2) \rightarrow H^4(X))$ under d , and $V^3 = C^3 \oplus N^3$.

Extend $\Lambda V^2 \rightarrow A_{PL}(X)$ to $\Lambda V^{\leq 3}$ by sending C^3 to the representatives and making the image of N^3 compatible with d .

This makes that $\Lambda V^{\leq 3} \rightarrow A_{PL}(X)$ is isomorphic on $H^{\leq 3}$ and injective on H^4 .

- ③ Set C^4 satisfying $H^4(\Lambda V^{\leq 3}) \oplus C^4 \cong H^4(X)$, $N^4 \cong \ker(H^5(\Lambda V^{\leq 3}) \rightarrow H^5(X))$ under d , and $V^4 = C^4 \oplus N^4$.

Constructing minimal Sullivan model

For simplicity, we assume that X is 1-connected and $H^*(X)$ is of finite type.

- ① Set $V^2 \cong H^2(X)$, and construct a linear map sending V^2 to the representatives in $A_{PL}(X)$.

This induces a CDGA morphism $\Lambda V^2 \rightarrow A_{PL}(X)$, which is isomorphic on H^2 . As $(\Lambda V^2)^3 = 0$, it is injective on H^3 .

- ② Set $C^3 \cong H^3(X)$, $N^3 \cong \ker(H^4(\Lambda V^2) \rightarrow H^4(X))$ under d , and $V^3 = C^3 \oplus N^3$.

Extend $\Lambda V^2 \rightarrow A_{PL}(X)$ to $\Lambda V^{\leq 3}$ by sending C^3 to the representatives and making the image of N^3 compatible with d .

This makes that $\Lambda V^{\leq 3} \rightarrow A_{PL}(X)$ is isomorphic on $H^{\leq 3}$ and injective on H^4 .

- ③ Set C^4 satisfying $H^4(\Lambda V^{\leq 3}) \oplus C^4 \cong H^4(X)$, $N^4 \cong \ker(H^5(\Lambda V^{\leq 3}) \rightarrow H^5(X))$ under d , and $V^4 = C^4 \oplus N^4$.

.....

Examples

S^{2n+1} : $\Lambda(x)$, $\deg x = 2n + 1$, $dx = 0$.

S^{2n} : $\Lambda(x, y)$, $\deg x = 2n$, $\deg y = 4n - 1$, $dx = 0$, $dy = x^2$.

$S^3 \vee S^3$:

First need x, y of degree 3, such that $dx = dy = 0$.

Next need z of degree 5 such that $dz = xy$.

Then need u, v of degree 7 such that $du = xz, dv = yz$ The vector space V generating the minimal Sullivan model is infinite dimensional, but is of finite type.

$S^1 \vee S^1$:

The model is same as the model for $S^3 \vee S^3$ except the degree. Here $\deg x = \deg y = \deg z = \deg u = \deg v = \dots = 1$. In particular, $\dim V^1 = \infty$.

Examples

S^{2n+1} : $\Lambda(x)$, $\deg x = 2n + 1$, $dx = 0$.

S^{2n} : $\Lambda(x, y)$, $\deg x = 2n$, $\deg y = 4n - 1$, $dx = 0$, $dy = x^2$.

$S^3 \vee S^3$:

First need x, y of degree 3, such that $dx = dy = 0$.

Next need z of degree 5 such that $dz = xy$.

Then need u, v of degree 7 such that $du = xz, dv = yz$ The vector space V generating the minimal Sullivan model is infinite dimensional, but is of finite type.

$S^1 \vee S^1$:

The model is same as the model for $S^3 \vee S^3$ except the degree. Here $\deg x = \deg y = \deg z = \deg u = \deg v = \dots = 1$. In particular, $\dim V^1 = \infty$.

Examples

S^{2n+1} : $\Lambda(x)$, $\deg x = 2n + 1$, $dx = 0$.

S^{2n} : $\Lambda(x, y)$, $\deg x = 2n$, $\deg y = 4n - 1$, $dx = 0$, $dy = x^2$.

$S^3 \vee S^3$:

First need x, y of degree 3, such that $dx = dy = 0$.

Next need z of degree 5 such that $dz = xy$.

Then need u, v of degree 7 such that $du = xz, dv = yz$ The vector space V generating the minimal Sullivan model is infinite dimensional, but is of finite type.

$S^1 \vee S^1$:

The model is same as the model for $S^3 \vee S^3$ except the degree. Here $\deg x = \deg y = \deg z = \deg u = \deg v = \dots = 1$. In particular, $\dim V^1 = \infty$.

Examples

S^{2n+1} : $\Lambda(x)$, $\deg x = 2n + 1$, $dx = 0$.

S^{2n} : $\Lambda(x, y)$, $\deg x = 2n$, $\deg y = 4n - 1$, $dx = 0$, $dy = x^2$.

$S^3 \vee S^3$:

First need x, y of degree 3, such that $dx = dy = 0$.

Next need z of degree 5 such that $dz = xy$.

Then need u, v of degree 7 such that $du = xz, dv = yz$ The vector space V generating the minimal Sullivan model is infinite dimensional, but is of finite type.

$S^1 \vee S^1$:

The model is same as the model for $S^3 \vee S^3$ except the degree. Here $\deg x = \deg y = \deg z = \deg u = \deg v = \dots = 1$. In particular, $\dim V^1 = \infty$.

Lifting lemma for Sullivan algebras

Lemma (Lifting Lemma)

Let $\eta : A \rightarrow C$ be a *surjective quasi-isomorphism* of CDGA, and $\psi : \Lambda V \rightarrow C$ be a CDGA morphism from a Sullivan algebra. Then there exists a CDGA morphism $\phi : \Lambda V \rightarrow A$ such that $\eta \circ \phi = \psi$.

$$\begin{array}{ccc} & A & \\ \phi \swarrow & \nearrow \simeq & \downarrow \eta \\ \Lambda V & \xrightarrow{\psi} & C \end{array}$$

Idea of proof. Construct ϕ on $V(k)$ inductively.

Definition

Let $\phi_0, \phi_1 : \Lambda V \rightarrow A$ be CDGA morphisms from some Sullivan algebra ΛV . We say ϕ_0 and ϕ_1 are **homotopic** if there exists a morphism $\Phi : \Lambda V \rightarrow A \otimes \Lambda(t, dt)$ with $\deg t = 0$ such that $(id_A \otimes \epsilon_i) \circ \Phi = \phi_i$ for $i = 0, 1$. Here $\epsilon_i : \Lambda(t, dt) \rightarrow \mathbb{Q}$ sends t to i . When ϕ_0 and ϕ_1 are homotopic, we denote it as $\phi_0 \sim \phi_1$.

Proposition

Suppose that $f_0, f_1 : X \rightarrow Y$ are homotopic maps on topological spaces. Let $\psi : \Lambda V \rightarrow A_{PL}(Y)$ be a CDGA morphism from a Sullivan algebra. Then $A_{PL}(f_0) \circ \psi \sim A_{PL}(f_1) \circ \psi : \Lambda V \rightarrow A_{PL}(X)$.

Idea of proof. $\Lambda(t, dt) \rightarrow A_{PL}(I)$ is an injective quasi-isomorphism.

Definition

Let $\phi_0, \phi_1 : \Lambda V \rightarrow A$ be CDGA morphisms from some Sullivan algebra ΛV . We say ϕ_0 and ϕ_1 are **homotopic** if there exists a morphism $\Phi : \Lambda V \rightarrow A \otimes \Lambda(t, dt)$ with $\deg t = 0$ such that $(id_A \otimes \epsilon_i) \circ \Phi = \phi_i$ for $i = 0, 1$. Here $\epsilon_i : \Lambda(t, dt) \rightarrow \mathbb{Q}$ sends t to i . When ϕ_0 and ϕ_1 are homotopic, we denote it as $\phi_0 \sim \phi_1$.

Proposition

Suppose that $f_0, f_1 : X \rightarrow Y$ are homotopic maps on topological spaces. Let $\psi : \Lambda V \rightarrow A_{PL}(Y)$ be a CDGA morphism from a Sullivan algebra. Then $A_{PL}(f_0) \circ \psi \sim A_{PL}(f_1) \circ \psi : \Lambda V \rightarrow A_{PL}(X)$.

Idea of proof. $\Lambda(t, dt) \rightarrow A_{PL}(I)$ is an injective quasi-isomorphism.

Lifting lemma up to homotopy

Lemma

Let $\eta : A \rightarrow C$ be a *quasi-isomorphism* of CDGA, and $\psi : \Lambda V \rightarrow C$ be a CDGA morphism from a Sullivan algebra. Then there exists a CDGA morphism $\phi : \Lambda V \rightarrow A$ such that $\eta \circ \phi \sim \psi$, i.e. the diagram below is commutative up to homotopy.

$$\begin{array}{ccc} & & A \\ & \swarrow \phi & \downarrow \simeq \\ \Lambda V & \xrightarrow{\psi} & C \end{array}$$

Actually, η induces a bijection between the homotopy classes $[\Lambda V, A]$ and $[\Lambda V, C]$.

Idea of proof.

- ① First consider the case that η is surjective. Then the surjectivity of $[\Lambda V, A] \rightarrow [\Lambda V, C]$ follows from the lifting lemma.
For the injectivity, we can lift a homotopy $\Lambda V \rightarrow C \otimes \Lambda(t, dt)$ to a homotopy $\Lambda V \rightarrow A \otimes \Lambda(t, dt)$ by a suitable construction.
- ② For general η , set $E(C) = \Lambda(C' \oplus dC')$, where C' is isomorphic to C as a graded vector space, and $d : C' \xrightarrow{\cong} dC'$.
Let $\rho : E(C) \rightarrow C$ be the natural morphism induced by the isomorphism $C' \rightarrow C$. Then η can be factored as

$$A \xhookrightarrow{\cong} A \otimes E(C) \xrightarrow[\cong]{\eta \cdot \rho} C.$$

The inclusion $A \hookrightarrow A \otimes E(C)$ has a left inverse, which is a surjective quasi-isomorphism. Applying the previous case on it and $\eta \cdot \rho$, we have obtained

$$[\Lambda V, A] \cong [\Lambda V, A \otimes E(C)] \cong [\Lambda V, C].$$

Idea of proof.

- ① First consider the case that η is surjective. Then the surjectivity of $[\Lambda V, A] \rightarrow [\Lambda V, C]$ follows from the lifting lemma.
For the injectivity, we can lift a homotopy $\Lambda V \rightarrow C \otimes \Lambda(t, dt)$ to a homotopy $\Lambda V \rightarrow A \otimes \Lambda(t, dt)$ by a suitable construction.
- ② For general η , set $E(C) = \Lambda(C' \oplus dC')$, where C' is isomorphic to C as a graded vector space, and $d : C' \xrightarrow{\cong} dC'$.
Let $\rho : E(C) \rightarrow C$ be the natural morphism induced by the isomorphism $C' \rightarrow C$. Then η can be factored as

$$A \xhookrightarrow{\cong} A \otimes E(C) \xrightarrow[\cong]{\eta \cdot \rho} C.$$

The inclusion $A \hookrightarrow A \otimes E(C)$ has a left inverse, which is a surjective quasi-isomorphism. Applying the previous case on it and $\eta \cdot \rho$, we have obtained

$$[\Lambda V, A] \cong [\Lambda V, A \otimes E(C)] \cong [\Lambda V, C].$$

Proposition

- ① If $\phi_0 \sim \phi_1 : \Lambda V \rightarrow A$, then $H(\phi_0) = H(\phi_1)$.
- ② If $\phi_0 \sim \phi_1 : \Lambda V \rightarrow \Lambda W$, then $H(Q(\phi_0)) = H(Q(\phi_1))$. Here $Q(\Lambda V) = \frac{(\Lambda V)^+}{(\Lambda V)^+ \cdot (\Lambda V)^+}$ and it is isomorphic to V as a graded vector space. $Q(\phi_0), Q(\phi_1) : Q(\Lambda V) \rightarrow Q(\Lambda W)$ are induced by ϕ_0 and ϕ_1 .

Idea of proof.

- ① Construct a chain homotopy map $h : \Lambda V \rightarrow A$ such that $\phi_1 - \phi_0 = dh + hd$.
- ② A homotopy Φ for $\phi_0 \sim \phi_1$ induces a morphism $\bar{\Phi} : Q(\Lambda V) \rightarrow Q(\Lambda W) \otimes \Lambda(t, dt)$. If in addition that ΛW is minimal, the cocycles in the codomain are in $Q(\Lambda W) \otimes (\mathbb{Q} \oplus \Lambda(t)dt)$. Then

$$(id_{Q(\Lambda W)} \otimes \epsilon_0) \circ \bar{\Phi} = (id_{Q(\Lambda W)} \otimes \epsilon_1) \circ \bar{\Phi}.$$

Finally discuss the general case.

Homotopic morphisms are same on homology

Proposition

- ① If $\phi_0 \sim \phi_1 : \Lambda V \rightarrow A$, then $H(\phi_0) = H(\phi_1)$.
- ② If $\phi_0 \sim \phi_1 : \Lambda V \rightarrow \Lambda W$, then $H(Q(\phi_0)) = H(Q(\phi_1))$. Here $Q(\Lambda V) = \frac{(\Lambda V)^+}{(\Lambda V)^+ \cdot (\Lambda V)^+}$ and it is isomorphic to V as a graded vector space. $Q(\phi_0), Q(\phi_1) : Q(\Lambda V) \rightarrow Q(\Lambda W)$ are induced by ϕ_0 and ϕ_1 .

Idea of proof.

- ① Construct a chain homotopy map $h : \Lambda V \rightarrow A$ such that $\phi_1 - \phi_0 = dh + hd$.
- ② A homotopy Φ for $\phi_0 \sim \phi_1$ induces a morphism $\overline{\Phi} : Q(\Lambda V) \rightarrow Q(\Lambda W) \otimes \Lambda(t, dt)$.
If in addition that ΛW is minimal, the cocycles in the codomain are in $Q(\Lambda W) \otimes (\mathbb{Q} \oplus \Lambda(t)dt)$. Then

$$(id_{Q(\Lambda W)} \otimes \epsilon_0) \circ \overline{\Phi} = (id_{Q(\Lambda W)} \otimes \epsilon_1) \circ \overline{\Phi}.$$

Finally discuss the general case.

Uniqueness of minimal Sullivan model

Proposition

If $\phi : \Lambda V \rightarrow \Lambda W$ is a quasi-isomorphism of minimal Sullivan algebras, then it is an isomorphism.

Idea of proof.

Lift $id : \Lambda W \rightarrow \Lambda W$ through ϕ , we have obtained a morphism $\psi : \Lambda W \rightarrow \Lambda V$ such that $\psi\phi \sim id$.

$$\begin{array}{ccc} & \Lambda V & \\ \psi \swarrow & \approx & \downarrow \phi \\ \Lambda W & \xrightarrow{id} & \Lambda W \end{array}$$

Then $H(Q(\phi) \circ Q(\psi)) = id$. As ΛV and ΛW are minimal, $H(Q(\Lambda V)) \cong V$ and $H(Q(\Lambda W)) \cong W \Rightarrow Q(\phi) \circ Q(\psi) = id$ on $W \Rightarrow \phi\psi = id$ on ΛW . Finally, a same discussion on ψ shows that it has a right inverse.

Uniqueness of minimal Sullivan model

Proposition

If $\phi : \Lambda V \rightarrow \Lambda W$ is a quasi-isomorphism of minimal Sullivan algebras, then it is an isomorphism.

Idea of proof.

Lift $id : \Lambda W \rightarrow \Lambda W$ through ϕ , we have obtained a morphism $\psi : \Lambda W \rightarrow \Lambda V$ such that $\psi\phi \sim id$.

$$\begin{array}{ccc} & \Lambda V & \\ \psi \swarrow & \simeq \downarrow \phi & \\ \Lambda W & \xrightarrow{id} & \Lambda W \end{array}$$

Then $H(Q(\phi) \circ Q(\psi)) = id$. As ΛV and ΛW are minimal, $H(Q(\Lambda V)) \cong V$ and $H(Q(\Lambda W)) \cong W \implies Q(\phi) \circ Q(\psi) = id$ on $W \implies \phi\psi = id$ on ΛW . Finally, a same discussion on ψ shows that it has a right inverse.

Sullivan representatives

Proposition

Let $f : X \rightarrow Y$ be a continuous map of path-connected spaces, and $\Lambda V, \Lambda W$ be the minimal Sullivan models of X and Y respectively. Then there exists a unique morphism $\phi : \Lambda W \rightarrow \Lambda V$ making the diagram below commutative up to homotopy.

$$\begin{array}{ccc} \Lambda W & \xrightarrow{\phi} & \Lambda V \\ \downarrow \simeq & & \downarrow \simeq \\ A_{PL}(Y) & \xrightarrow{A_{PL}(f)} & A_{PL}(X) \end{array}$$

Definition

Let B be a connected CDGA. A **Λ -extension** of B is an inclusion $B \rightarrow B \otimes \Lambda Z$ such that $\deg Z \geq 0$ and Z is the union of an increasing sequence of subspaces

$$Z(0) \subset Z(1) \subset \dots \subset Z(k) \subset \dots$$

satisfying

$$dZ(k) \subset (\mathbb{Q} \oplus B^{\geq 1}) \otimes \Lambda Z(k-1).$$

If in addition $\deg Z \geq 1$, $B \rightarrow B \otimes \Lambda Z$ is called a **Sullivan extension**, and $B \otimes \Lambda Z$ is called a **relative Sullivan algebra**.

Definition

Let B be a connected CDGA. A **Λ -extension** of B is an inclusion $B \rightarrow B \otimes \Lambda Z$ such that $\deg Z \geq 0$ and Z is the union of an increasing sequence of subspaces

$$Z(0) \subset Z(1) \subset \dots \subset Z(k) \subset \dots$$

satisfying

$$dZ(k) \subset (\mathbb{Q} \oplus B^{\geq 1}) \otimes \Lambda Z(k-1).$$

If in addition $\deg Z \geq 1$, $B \rightarrow B \otimes \Lambda Z$ is called a **Sullivan extension**, and $B \otimes \Lambda Z$ is called a **relative Sullivan algebra**.

Factorization theorem

Let $B \otimes \Lambda Z$ be a relative Sullivan algebra. B is called the **base algebra** of $B \otimes \Lambda Z$.

On the other hand, an augmentation $B \rightarrow \mathbb{Q}$ induces a morphism $B \otimes \Lambda Z \rightarrow \Lambda Z$, which gives ΛZ a Sullivan algebra structure. This ΛZ is called the **fiber algebra** of $B \otimes \Lambda Z$.

If ΛZ is minimal, we call $B \otimes \Lambda Z$ a **minimal relative algebra**.

Remark.

We can also define the minimality for Λ -extensions similarly.

Theorem

Let $f : B \rightarrow C$ be a morphism of connected CDGAs. Then it can be factored as a minimal Λ -extension $B \rightarrow B \otimes \Lambda Z$ and a quasi-isomorphism $B \otimes \Lambda Z \rightarrow C$ uniquely up to isomorphism.

Moreover, if $f^* : H^1(B) \rightarrow H^1(C)$ is injective, then $B \otimes \Lambda W$ is a relative Sullivan algebra, which is called the *Sullivan model of f* .

Factorization theorem

Let $B \otimes \Lambda Z$ be a relative Sullivan algebra. B is called the **base algebra** of $B \otimes \Lambda Z$.

On the other hand, an augmentation $B \rightarrow \mathbb{Q}$ induces a morphism $B \otimes \Lambda Z \rightarrow \Lambda Z$, which gives ΛZ a Sullivan algebra structure. This ΛZ is called the **fiber algebra** of $B \otimes \Lambda Z$.

If ΛZ is minimal, we call $B \otimes \Lambda Z$ a **minimal relative algebra**.

Remark.

We can also define the minimality for Λ -extensions similarly.

Theorem

Let $f : B \rightarrow C$ be a morphism of connected CDGAs. Then it can be factored as a minimal Λ -extension $B \rightarrow B \otimes \Lambda Z$ and a quasi-isomorphism $B \otimes \Lambda Z \rightarrow C$ uniquely up to isomorphism.

Moreover, if $f^* : H^1(B) \rightarrow H^1(C)$ is injective, then $B \otimes \Lambda W$ is a relative Sullivan algebra, which is called the *Sullivan model of f* .

Factorization theorem

Let $B \otimes \Lambda Z$ be a relative Sullivan algebra. B is called the **base algebra** of $B \otimes \Lambda Z$.

On the other hand, an augmentation $B \rightarrow \mathbb{Q}$ induces a morphism $B \otimes \Lambda Z \rightarrow \Lambda Z$, which gives ΛZ a Sullivan algebra structure. This ΛZ is called the **fiber algebra** of $B \otimes \Lambda Z$.

If ΛZ is minimal, we call $B \otimes \Lambda Z$ a **minimal relative algebra**.

Remark.

We can also define the minimality for Λ -extensions similarly.

Theorem

Let $f : B \rightarrow C$ be a morphism of connected CDGAs. Then it can be factored as a minimal Λ -extension $B \rightarrow B \otimes \Lambda Z$ and a quasi-isomorphism $B \otimes \Lambda Z \rightarrow C$ uniquely up to isomorphism.

Moreover, if $f^* : H^1(B) \rightarrow H^1(C)$ is injective, then $B \otimes \Lambda W$ is a relative Sullivan algebra, which is called the **Sullivan model of f** .

Fibration and relative Sullivan algebra

Theorem

Suppose that $F \rightarrow E \rightarrow B$ is a fibration, or a Serre fibration with F being a CW complex, satisfying the following conditions.

- (1) F , E and B are path-connected.
- (2) $\pi_1(B)$ acts on $H^*(F; \mathbb{Q})$ locally nilpotently.
- (3) One of $H^*(F)$ is of $H^*(B)$ has finite type.
- (4) There is a relative Sullivan algebra $\Lambda V \otimes \Lambda Z$ and morphisms making the following diagram commutative.

$$\begin{array}{ccccc} (\Lambda V, d) & \xhookrightarrow{\quad} & (\Lambda V \otimes \Lambda Z, d) & \xrightarrow{\text{pr}} & (\Lambda Z, \bar{d}) \\ f_B \downarrow & & f_E \downarrow & & f_F \downarrow \\ A_{PL}(B) & \longrightarrow & A_{PL}(E) & \longrightarrow & A_{PL}(F) \end{array}$$

- (i) If f_B and f_E are both quasi-isomorphisms, then so is f_F .
- (ii) If f_B and f_F are both quasi-isomorphisms, then so is f_E .

A counterexample

The requirement that $\pi_1(Y)$ acts on $H^*(F; \mathbb{Q})$ locally nilpotently is necessary.

Example

Let F be the homotopy fiber of $S^1 \vee S^2 \rightarrow S^1$ contracting S^2 to a point.

Then we have a fibration $F \rightarrow E \rightarrow B$, with $F \simeq \widetilde{S^1 \vee S^2}$, $E \simeq S^1 \vee S^2$ and $B = S^1$. The $\pi_1(B)$ -action is not locally nilpotent. Also $\dim H_2(F) = \infty$, then $\dim H^2(F)$ is uncountable.

On the other hand, Λv is a minimal Sullivan model of B with $\deg v = 1$. It can be extended to a minimal Sullivan model $\Lambda v \otimes \Lambda Z$ with $\deg Z \geq 2$ and $\dim Z^2$ countable. But the induced $\Lambda Z \rightarrow A_{PL}(F)$ is not a quasi-isomorphism, because the dimension of H^2 are different.

Theorem

Suppose that X is *simply-connected* and $H^*(X; \mathbb{Q})$ has *finite type*. ΛV is the minimal Sullivan model of X . Then

$$V^n \cong \text{Hom}(\pi_n(X), \mathbb{Q}).$$

Idea of proof.

1. Start from $X = K(\pi, 1)$ with π abelian and of finite rank r .

Let $a_1, \dots, a_r \in \pi$ be a basis of $\pi \otimes \mathbb{Q}$. They give a morphism $\mathbb{Z}^r \rightarrow \pi$, then a map $K(\mathbb{Z}^r, 2) \rightarrow K(\pi, 2)$ which is isomorphism on $\pi_* \otimes \mathbb{Q}$.

Theorem (Whitehead-Serre)

Suppose that $f : Y \rightarrow Z$ is a continuous map between 1-connected spaces.

Then the following statements are equivalent.

- (i) $\pi_*(f) \otimes \mathbb{Q} : \pi_*(Y) \otimes \mathbb{Q} \rightarrow \pi_*(Z) \otimes \mathbb{Q}$ is an isomorphism.
- (ii) $H_*(f; \mathbb{Q}) : H_*(Y; \mathbb{Q}) \rightarrow H_*(Z; \mathbb{Q})$ is an isomorphism.
- (iii) $H_*(\Omega f; \mathbb{Q}) : H_*(\Omega Y; \mathbb{Q}) \rightarrow H_*(\Omega Z; \mathbb{Q})$ is an isomorphism.

Thus,

$$\begin{aligned} H^*(T^r; \mathbb{Q}) &= H^*(K(\mathbb{Z}^r, 1); \mathbb{Q}) = H^*(\Omega K(\mathbb{Z}^r, 2); \mathbb{Q}) \\ &\cong H^*(\Omega K(\pi, 2); \mathbb{Q}) = H^*(X; \mathbb{Q}). \end{aligned}$$

The minimal Sullivan model of T^r can be taken as $\Lambda(x_1, \dots, x_r)$ with all $\deg x_i = 1$ and $dx_i = 0$.

Remark. The Whitehead-Serre theorem may not hold if the spaces are not 1-connected. That is why we prove the statement in this way instead of constructing $K(\mathbb{Z}^r, 1) \rightarrow K(\pi, 1)$ directly.

2. Use induction. Suppose the statement holds for $K(\pi, k)$ for $k < n$. Let $X = K(\pi, n)$.

Suppose that ΛV is a minimal model of X . Then V is concentrated in degree $\geq n$. Set U such that $d : U^{k-1} \xrightarrow{\cong} V^k$ for all k . There exists the following commutative diagram.

$$\begin{array}{ccccc} (\Lambda V, d) & \xhookrightarrow{\quad} & (\Lambda V \otimes \Lambda U, d) & \xrightarrow{\text{pr}} & (\Lambda U, \bar{d}) \\ \simeq \downarrow & & \simeq \downarrow & & \downarrow \\ A_{PL}(X) & \longrightarrow & A_{PL}(PX) & \longrightarrow & A_{PL}(\Omega X) \end{array}$$

Then ΛU is a minimal Sullivan model of $\Omega X = K(\pi, n-1)$.

By inductive hypothesis $U = U^{n-1}$ and $\dim U = \dim(\pi \otimes \mathbb{Q})$. So $V = V^n$ and $\dim V = \dim(\pi \otimes \mathbb{Q})$.

Remark. The Whitehead-Serre theorem may not hold if the spaces are not 1-connected. That is why we prove the statement in this way instead of constructing $K(\mathbb{Z}^r, 1) \rightarrow K(\pi, 1)$ directly.

2. Use induction. Suppose the statement holds for $K(\pi, k)$ for $k < n$. Let $X = K(\pi, n)$.

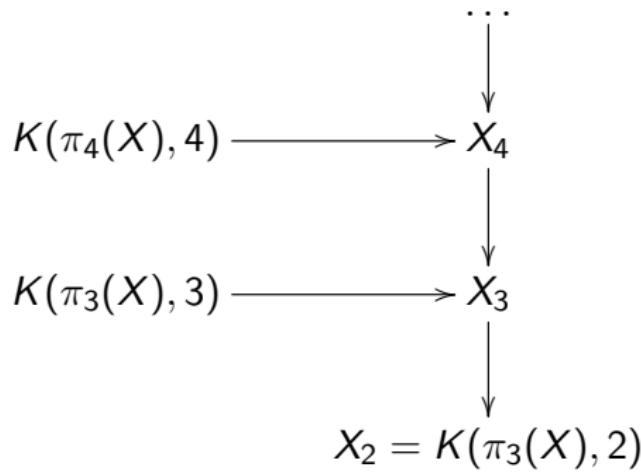
Suppose that ΛV is a minimal model of X . Then V is concentrated in degree $\geq n$. Set U such that $d : U^{k-1} \xrightarrow{\cong} V^k$ for all k . There exists the following commutative diagram.

$$\begin{array}{ccccc}
 (\Lambda V, d) & \xhookrightarrow{\quad} & (\Lambda V \otimes \Lambda U, d) & \xrightarrow{\text{pr}} & (\Lambda U, \bar{d}) \\
 \simeq \downarrow & & \simeq \downarrow & & \downarrow \\
 A_{PL}(X) & \longrightarrow & A_{PL}(PX) & \longrightarrow & A_{PL}(\Omega X)
 \end{array}$$

Then ΛU is a minimal Sullivan model of $\Omega X = K(\pi, n-1)$.

By inductive hypothesis $U = U^{n-1}$ and $\dim U = \dim(\pi \otimes \mathbb{Q})$. So $V = V^n$ and $\dim V = \dim(\pi \otimes \mathbb{Q})$.

3. Consider general X . Prove the statement holds for all X_n on the Postnikov tower inductively.



4. For each n , turn $X \rightarrow X_n$ into a fibration $F_n \rightarrow X \rightarrow X_n$. Take a minimal Sullivan model ΛW of X_n , and extend it to a minimal relative Sullivan algebra $\Lambda W \otimes \Lambda U$ which is a model of X .

$$\begin{array}{ccccc}
 (\Lambda W, d) & \xhookrightarrow{\quad} & (\Lambda W \otimes \Lambda U, d) & \xrightarrow{pr} & (\Lambda U, \bar{d}) \\
 \simeq \downarrow & & \simeq \downarrow & & \downarrow \\
 A_{PL}(X_n) & \longrightarrow & A_{PL}(X) & \longrightarrow & A_{PL}(F_n)
 \end{array}$$

Then ΛU is a minimal Sullivan model of the n -connected space F_n . So $\deg U \geq n+1$ and for degree reason $\Lambda W \otimes \Lambda U$ is a minimal Sullivan algebra (i.e. the minimal Sullivan model of X). Therefore,

$$(W \oplus U)^n = W^n \cong \text{Hom}(\pi_n(X_n), \mathbb{Q}) = \text{Hom}(\pi_n(X), \mathbb{Q}).$$

A counterexample

For non-simply-connected spaces, its rational homotopy group may not be represented by the minimal Sullivan model.

Example

Let $X = \mathbb{R}P^2$. Then $H^n(X; \mathbb{Z}) = \begin{cases} \mathbb{Z}, & n = 0 \\ \mathbb{Z}/2\mathbb{Z}, & n = 2 \\ 0, & \text{otherwise} \end{cases}$

So $H^*(X; \mathbb{Q}) = \mathbb{Q}$ and its minimal Sullivan model ΛV is \mathbb{Q} trivially ($V = 0$). But $\pi_2(X) \otimes \mathbb{Q} = \mathbb{Q}$ is non-trivial.

Definition

Let ΛV be a minimal Sullivan algebra. $\text{Hom}(V^n, \mathbb{Q})$ is called the n -th **homotopy group** ($n \geq 2$) of ΛV , and written as $\pi_n(\Lambda V)$.

Remark. $\pi_1(\Lambda V)$ is defined differently, and is **non-abelian** in general. It is only well-defined when $\dim H^1(\Lambda V) < \infty$.

Definition

Let ΛV be a minimal Sullivan algebra. $\text{Hom}(V^n, \mathbb{Q})$ is called the n -th **homotopy group** ($n \geq 2$) of ΛV , and written as $\pi_n(\Lambda V)$.

Remark. $\pi_1(\Lambda V)$ is defined differently, and is **non-abelian** in general. It is only well-defined when $\dim H^1(\Lambda V) < \infty$.

Homotopy Lie algebra of ΛV

Actually, $\text{Hom}(V, \mathbb{Q})$ has a Lie algebra structure, and is called the **homotopy Lie algebra** of ΛV . Set $L_{n-1} = \text{Hom}(V^n, \mathbb{Q})$ for $n \geq 1$. This gives a pairing $V \times L \rightarrow \mathbb{Q}$ by

$$\langle v, x \rangle = (-1)^{\deg v} x(v).$$

(More precisely, this pairing is $\langle v, sx \rangle$, where sx is the suspension of x .)

This paring can be extended to $\Lambda^p V \times L^p \rightarrow \mathbb{Q}$ (Here $\Lambda^p V$ is the subspace of V spanned by elements of wordlength p and $L^p = L \times \dots \times L$) as

$$\langle v_1 \wedge \dots \wedge v_p, x_p, \dots, x_1 \rangle = \sum_{\sigma \in S_p} \epsilon_\sigma \langle v_{\sigma(1)}, x_1 \rangle \dots \langle v_{\sigma(p)}, x_p \rangle.$$

Let $d_1 v$ denote the component of dv in $\Lambda^2 V$. The Lie bracket of L is given by

$$\langle v, [x, y] \rangle = (-1)^{\deg y + 1} \langle d_1 v, x, y \rangle.$$

Homotopy Lie algebra of ΛV

Actually, $\text{Hom}(V, \mathbb{Q})$ has a Lie algebra structure, and is called the **homotopy Lie algebra** of ΛV . Set $L_{n-1} = \text{Hom}(V^n, \mathbb{Q})$ for $n \geq 1$. This gives a pairing $V \times L \rightarrow \mathbb{Q}$ by

$$\langle v, x \rangle = (-1)^{\deg v} x(v).$$

(More precisely, this pairing is $\langle v, sx \rangle$, where sx is the suspension of x .)

This paring can be extended to $\Lambda^p V \times L^p \rightarrow \mathbb{Q}$ (Here $\Lambda^p V$ is the subspace of V spanned by elements of wordlength p and $L^p = L \times \dots \times L$) as

$$\langle v_1 \wedge \dots \wedge v_p, x_p, \dots, x_1 \rangle = \sum_{\sigma \in S_p} \epsilon_\sigma \langle v_{\sigma(1)}, x_1 \rangle \dots \langle v_{\sigma(p)}, x_p \rangle.$$

Let $d_1 v$ denote the component of dv in $\Lambda^2 V$. The Lie bracket of L is given by

$$\langle v, [x, y] \rangle = (-1)^{\deg y + 1} \langle d_1 v, x, y \rangle.$$

Homotopy Lie algebra of ΛV

Actually, $\text{Hom}(V, \mathbb{Q})$ has a Lie algebra structure, and is called the **homotopy Lie algebra** of ΛV . Set $L_{n-1} = \text{Hom}(V^n, \mathbb{Q})$ for $n \geq 1$. This gives a pairing $V \times L \rightarrow \mathbb{Q}$ by

$$\langle v, x \rangle = (-1)^{\deg v} x(v).$$

(More precisely, this pairing is $\langle v, sx \rangle$, where sx is the suspension of x .)

This paring can be extended to $\Lambda^p V \times L^p \rightarrow \mathbb{Q}$ (Here $\Lambda^p V$ is the subspace of V spanned by elements of wordlength p and $L^p = L \times \dots \times L$) as

$$\langle v_1 \wedge \dots \wedge v_p, x_p, \dots, x_1 \rangle = \sum_{\sigma \in S_p} \epsilon_\sigma \langle v_{\sigma(1)}, x_1 \rangle \dots \langle v_{\sigma(p)}, x_p \rangle.$$

Let $d_1 v$ denote the component of dv in $\Lambda^2 V$. The Lie bracket of L is given by

$$\langle v, [x, y] \rangle = (-1)^{\deg y + 1} \langle d_1 v, x, y \rangle.$$

The definition of $\pi_1(\Lambda V)$

$\pi_1(\Lambda V)$ is defined as $\exp L_0$. The precise definition is given as follows.

UL_0 : The universal enveloping algebra of L_0 , i.e. TL_0 / \sim with
 $x \otimes y - y \otimes x \sim [x, y]$.

I_{L_0} : The ideal in UL_0 generated by L_0 .

$\widehat{UL_0} := \varprojlim_n UL_0 / I_{L_0}^n$, the completion of UL_0 .

$\widehat{I_{L_0}} := \varprojlim_n I_{L_0} / I_{L_0}^n$.

Lemma. There exist inverse bijections

$$\widehat{I_{L_0}} \xrightleftharpoons[\log]{\exp} 1 + \widehat{I_{L_0}},$$

where

$$\exp x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n, \text{ and } \log(1 + x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n.$$

The definition of $\pi_1(\Lambda V)$

$\pi_1(\Lambda V)$ is defined as $\exp L_0$. The precise definition is given as follows.

UL_0 : The universal enveloping algebra of L_0 , i.e. TL_0 / \sim with

$$x \otimes y - y \otimes x \sim [x, y].$$

I_{L_0} : The ideal in UL_0 generated by L_0 .

$\widehat{UL_0} := \varprojlim_n UL_0 / I_{L_0}^n$, the completion of UL_0 .

$\widehat{I_{L_0}} := \varprojlim_n I_{L_0} / I_{L_0}^n$.

Lemma. There exist inverse bijections

$$\widehat{I_{L_0}} \xrightleftharpoons[\log]{\exp} 1 + \widehat{I_{L_0}},$$

where

$$\exp x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n, \text{ and } \log(1 + x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n.$$

$\Delta: L_0 \rightarrow L_0 \oplus L_0, x \mapsto (x, 0) + (0, x)$, the diagonal map.

$U\Delta: UL_0 \rightarrow U(L_0 \oplus L_0) = UL_0 \otimes UL_0$, induced by Δ .

$\widehat{U\Delta}: \widehat{UL}_0 \rightarrow \widehat{UL}_0 \widehat{\otimes} \widehat{UL}_0$, completion of $U\Delta$.

$P_{L_0} := \{x \in \widehat{L}_0 \mid \widehat{U\Delta}(x) = x \widehat{\otimes} 1 + 1 \widehat{\otimes} x\}$.

$G_{L_0} := \{1 + y \in 1 + \widehat{L}_0 \mid \widehat{U\Delta}(1 + y) = (1 + y) \widehat{\otimes} 1 + 1 \widehat{\otimes} (1 + y)\}$.

Lemma.

$$P_{L_0} \xrightleftharpoons[\log]{\exp} G_{L_0},$$

are inverse bijections.

Proposition. $L_0 \rightarrow P_{L_0}$ is injective. If in addition $\dim H^1(\Lambda V) < \infty$, then it is an isomorphism.

Proposition. The restriction of the multiplication of \widehat{UL}_0 to G_{L_0} gives the latter a group structure.

Definition

$\pi_1(\Lambda V)$ is defined as the group G_{L_0} when $\dim H^1(\Lambda V) < \infty$.

- 1 Introduction of rational homotopy theory and algebraic models
- 2 Sullivan models
- 3 Realization of minimal Sullivan algebras
- 4 Formality of sphere bundles

Realization

Given a Sullivan algebra ΛV (or more generally any CDGA), we can construct a simplicial set $\langle \Lambda V \rangle$, such that

$$\langle \Lambda V \rangle_n = \{\text{CDGA morphisms } \Lambda V \rightarrow (A_{PL})_n\}.$$

For $\sigma \in \langle \Lambda V \rangle_n$, $\partial_i(\sigma) = \partial_i \circ \sigma$ and $s_j(\sigma) = s_j \circ \sigma$.

For $\phi : \Lambda V \rightarrow \Lambda W$, there exists a simplicial map $\langle \phi \rangle : \langle \Lambda W \rangle \rightarrow \langle \Lambda V \rangle$, $\sigma \mapsto \sigma \circ \phi$.

In summary, $\langle - \rangle$ is a contravariant functor **CDGA** \rightarrow **sSet**.

Milnor realization is a functor $|-| : \mathbf{sSet} \rightarrow \mathbf{Top}$ such that

$$|\Lambda V| = \left(\coprod_n \langle \Lambda V \rangle_n \times \Delta^n \right) / \sim,$$

$$(\partial_i \sigma, x) \sim (\sigma, \lambda_i x), \quad (s_j \sigma, x) \sim (\sigma, \rho_j x),$$

$$\lambda_i : \Delta^{n-1} \rightarrow \Delta^n, \quad (a_0, \dots, a_{n-1}) \mapsto (a_0, \dots, a_{i-1}, 0, a_i, \dots, a_{n-1}),$$

$$\rho_j : \Delta^{n+1} \rightarrow \Delta^n, \quad (a_0, \dots, a_{n+1}) \mapsto (a_0, \dots, a_{j-1}, a_j + a_{j+1}, a_{j+2}, \dots, a_{n+1}).$$

Realization

Given a Sullivan algebra ΛV (or more generally any CDGA), we can construct a simplicial set $\langle \Lambda V \rangle$, such that

$$\langle \Lambda V \rangle_n = \{\text{CDGA morphisms } \Lambda V \rightarrow (A_{PL})_n\}.$$

For $\sigma \in \langle \Lambda V \rangle_n$, $\partial_i(\sigma) = \partial_i \circ \sigma$ and $s_j(\sigma) = s_j \circ \sigma$.

For $\phi : \Lambda V \rightarrow \Lambda W$, there exists a simplicial map $\langle \phi \rangle : \langle \Lambda W \rangle \rightarrow \langle \Lambda V \rangle$, $\sigma \mapsto \sigma \circ \phi$.

In summary, $\langle - \rangle$ is a contravariant functor **CDGA** \rightarrow **sSet**.

Milnor realization is a functor $|-| : \mathbf{sSet} \rightarrow \mathbf{Top}$ such that

$$|\Lambda V| = \left(\coprod_n \langle \Lambda V \rangle_n \times \Delta^n \right) / \sim,$$

$$(\partial_i \sigma, x) \sim (\sigma, \lambda_i x), \quad (s_j \sigma, x) \sim (\sigma, \rho_j x),$$

$$\lambda_i : \Delta^{n-1} \rightarrow \Delta^n, \quad (a_0, \dots, a_{n-1}) \mapsto (a_0, \dots, a_{i-1}, 0, a_i, \dots, a_{n-1}),$$

$$\rho_j : \Delta^{n+1} \rightarrow \Delta^n, \quad (a_0, \dots, a_{n+1}) \mapsto (a_0, \dots, a_{j-1}, a_j + a_{j+1}, a_{j+2}, \dots, a_{n+1}).$$

$\langle \Lambda V \rangle$ and $|\Lambda V|$

Fact. $|\Lambda V|$ is a CW complex. Its n -cells are identified with the non-degenerate n -simplices. This leads to a quasi-isomorphism

$$C_*(\langle \Lambda V \rangle) \xrightarrow{\simeq} C_*(|\Lambda V|).$$

Then

$$C^*(|\Lambda V|) \xrightarrow{\simeq} C^*(\langle \Lambda V \rangle) \quad \text{and} \quad A_{PL}(|\Lambda V|) \xrightarrow{\simeq} A_{PL}(\langle \Lambda V \rangle).$$

Proposition

$A_{PL}(|\Lambda V|) \xrightarrow{\simeq} A_{PL}(\langle \Lambda V \rangle)$ is a *surjective* quasi-isomorphism.

Idea of proof.

$\langle \Lambda V \rangle \rightarrow S_*(|\Lambda V|)$ is injective. Also all A_{PL}^n are *extendable* (Any simplicial map $\partial\Delta^k \rightarrow A_{PL}^n$ can be extended to Δ^k).

$\langle \Lambda V \rangle$ and $|\Lambda V|$

Fact. $|\Lambda V|$ is a CW complex. Its n -cells are identified with the non-degenerate n -simplices. This leads to a quasi-isomorphism

$$C_*(\langle \Lambda V \rangle) \xrightarrow{\simeq} C_*(|\Lambda V|).$$

Then

$$C^*(|\Lambda V|) \xrightarrow{\simeq} C^*(\langle \Lambda V \rangle) \quad \text{and} \quad A_{PL}(|\Lambda V|) \xrightarrow{\simeq} A_{PL}(\langle \Lambda V \rangle).$$

Proposition

$A_{PL}(|\Lambda V|) \xrightarrow{\simeq} A_{PL}(\langle \Lambda V \rangle)$ is a *surjective* quasi-isomorphism.

Idea of proof.

$\langle \Lambda V \rangle \rightarrow S_*(|\Lambda V|)$ is injective. Also all A_{PL}^n are *extendable* (Any simplicial map $\partial\Delta^k \rightarrow A_{PL}^n$ can be extended to Δ^k).

Morphism $m_{|\Lambda V|} : \Lambda V \rightarrow A_{PL}(|\Lambda V|)$

Recall that $\langle \Lambda V \rangle_n$ consists of morphisms from ΛV to $(A_{PL})_n$. Taking adjoint induces a CDGA morphism $m_{\langle \Lambda V \rangle}$.

$$\begin{array}{ccc} id : \langle \Lambda V \rangle & \rightarrow & \langle \Lambda V \rangle \\ & \Downarrow & \\ & \langle \Lambda V \rangle \times \Lambda V & \rightarrow A_{PL} \\ & \Downarrow & \\ m_{\langle \Lambda V \rangle} : \Lambda V & \rightarrow & A_{PL}(\langle \Lambda V \rangle) = \{\text{simplicial maps } \langle \Lambda V \rangle \rightarrow A_{PL}\} \end{array}$$

For example, given $x \in \Lambda V$ and $\sigma \in \langle \Lambda V \rangle$, $[m_{\langle \Lambda V \rangle}(x)](\sigma) = \sigma(x) \in A_{PL}$.

Lift $m_{\langle \Lambda V \rangle}$ through $A_{PL}(|\Lambda V|) \rightarrow A_{PL}(\langle \Lambda V \rangle)$, we obtain a morphism $m_{|\Lambda V|}$ uniquely up to homotopy.

$$\begin{array}{ccc} & & A_{PL}(|\Lambda V|) \\ & \nearrow m_{|\Lambda V|} & \downarrow \simeq \\ \Lambda V & \xrightarrow{m_{\langle \Lambda V \rangle}} & A_{PL}(\langle \Lambda V \rangle) \end{array}$$

Morphism $m_{|\Lambda V|} : \Lambda V \rightarrow A_{PL}(|\Lambda V|)$

Recall that $\langle \Lambda V \rangle_n$ consists of morphisms from ΛV to $(A_{PL})_n$. Taking adjoint induces a CDGA morphism $m_{\langle \Lambda V \rangle}$.

$$\begin{array}{ccc} id : \langle \Lambda V \rangle & \rightarrow & \langle \Lambda V \rangle \\ & \Downarrow & \\ \langle \Lambda V \rangle \times \Lambda V & \rightarrow & A_{PL} \\ & \Downarrow & \\ m_{\langle \Lambda V \rangle} : \Lambda V & \rightarrow & A_{PL}(\langle \Lambda V \rangle) = \{\text{simplicial maps } \langle \Lambda V \rangle \rightarrow A_{PL}\} \end{array}$$

For example, given $x \in \Lambda V$ and $\sigma \in \langle \Lambda V \rangle$, $[m_{\langle \Lambda V \rangle}(x)](\sigma) = \sigma(x) \in A_{PL}$.

Lift $m_{\langle \Lambda V \rangle}$ through $A_{PL}(|\Lambda V|) \rightarrow A_{PL}(\langle \Lambda V \rangle)$, we obtain a morphism $m_{|\Lambda V|}$ uniquely up to homotopy.

$$\begin{array}{ccc} & & A_{PL}(|\Lambda V|) \\ & \nearrow m_{|\Lambda V|} & \downarrow \simeq \\ \Lambda V & \xrightarrow{m_{\langle \Lambda V \rangle}} & A_{PL}(\langle \Lambda V \rangle) \end{array}$$

Realization preserves homotopy

Fact. $\pi_n(\Lambda V) \cong \pi_n(|\Lambda V|)$ when $\dim H^1(\Lambda V) < \infty$.

Let $\alpha \in \pi_n(|\Lambda V|)$ with a representative $\sigma : S^n \rightarrow |\Lambda V|$. Take $m(n) : \Lambda W \rightarrow A_{PL}(S^n)$ as a minimal Sullivan model. There exists a lift $\chi : \Lambda V \rightarrow \Lambda W$ (uniquely up to homotopy) making the following diagram homotopy commutative.

$$\begin{array}{ccc} \Lambda V & \xrightarrow{\chi} & \Lambda W \\ \downarrow m_{|\Lambda V|} & & \downarrow m(n) \simeq \\ A_{PL}(\Lambda V) & \xrightarrow{A_{PL}(\sigma)} & A_{PL}(S^n) \end{array}$$

Recall that homotopic maps induce the same morphism $V \cong Q(\Lambda V) \rightarrow Q(\Lambda W) \cong W$. So χ induces a morphism $Q(\chi) : V \rightarrow W$ independent on the choices of σ and χ .

Realization preserves homotopy

Fact. $\pi_n(\Lambda V) \cong \pi_n(|\Lambda V|)$ when $\dim H^1(\Lambda V) < \infty$.

Let $\alpha \in \pi_n(|\Lambda V|)$ with a representative $\sigma : S^n \rightarrow |\Lambda V|$. Take $m(n) : \Lambda W \rightarrow A_{PL}(S^n)$ as a minimal Sullivan model. There exists a lift $\chi : \Lambda V \rightarrow \Lambda W$ (uniquely up to homotopy) making the following diagram homotopy commutative.

$$\begin{array}{ccc} \Lambda V & \xrightarrow{\chi} & \Lambda W \\ \downarrow m_{|\Lambda V|} & & \downarrow m(n) \simeq \\ A_{PL}(\Lambda V) & \xrightarrow{A_{PL}(\sigma)} & A_{PL}(S^n) \end{array}$$

Recall that homotopic maps induce the same morphism $V \cong Q(\Lambda V) \rightarrow Q(\Lambda W) \cong W$. So χ induces a morphism $Q(\chi) : V \rightarrow W$ independent on the choices of σ and χ .

Let $w \in W^n$ such that $(m(n))w$ represents the fundamental class of S^n .
Set $\alpha_f \in \text{Hom}(V^n, \mathbb{Q})$ such that

$$\alpha_f(v)w = (Q(\chi))v.$$

Define

$$\iota_n : \pi_n(|\Lambda V|) \rightarrow \pi_n(\Lambda V), \quad \alpha \mapsto \begin{cases} \alpha_f, & n \geq 2; \\ \exp \alpha_f, & n = 1. \end{cases}$$

Theorem

ι_n is an isomorphism of groups.

Idea of proof.

Bijectivity. Construct an inverse map $\tau_n : \pi_n(\Lambda V) \rightarrow \pi_n(|\Lambda V|)$.

Consider the simplicial set $\Delta[n]/\partial\Delta[n]$. It has two non-degenerated simplices, c_0 of degree 0 and c_n of degree n .

For $f \in \pi_n(\Lambda V) = \text{Hom}(V, \mathbb{Q})$. Set

$$\begin{aligned}\phi_f : \Lambda V &\rightarrow A_{PL}(\Delta[n]/\partial\Delta[n]), \\ v &\mapsto \begin{pmatrix} c_n &\mapsto (-1)^n f(v) dt_1 \wedge \dots \wedge dt_n \in (A_{PL})_n^n \\ c_0 &\mapsto 0 \in (A_{PL})_0^n = 0 \end{pmatrix}.\end{aligned}$$

Taking its adjoint gives

$$\langle \phi_f \rangle : \Delta[n]/\partial\Delta[n] \rightarrow \langle \Lambda V \rangle.$$

And the realization gives

$$|\phi_f| : S^n = |\Delta[n]/\partial\Delta[n]| \rightarrow |\Lambda V|.$$

Set $\tau_n(f)$ as the homotopy class of $|\phi_f|$.

Group morphism. Use the quotient map $\Lambda V \rightarrow \Lambda V^{\geq n}$, the inclusion $\Lambda V^n \rightarrow \Lambda V^{\geq n}$, and the naturality of ι_n . The problem can be reduced to proving that $\iota_n : \pi_n(|\Lambda V^n|) \rightarrow \pi_n(\Lambda V^n)$ is an isomorphism.

When $n \geq 2$, this can be obtained by realizing the diagonal map

$$\Delta : \Lambda V^n \rightarrow \Lambda(V^n \oplus V^n) = \Lambda V^n \otimes \Lambda V^n,$$

which gives

$$|\Delta| : |\Lambda V^n \otimes \Lambda V^n| = |\Lambda V^n| \times |\Lambda V^n| \rightarrow |\Lambda V^n|.$$

The induced map on π_n then shows that ι_n is a group morphism.

The case $n = 1$ is more complicated as π_1 is non-abelian. We need to construct a homotopy between the representatives.

Group morphism. Use the quotient map $\Lambda V \rightarrow \Lambda V^{\geq n}$, the inclusion $\Lambda V^n \rightarrow \Lambda V^{\geq n}$, and the naturality of ι_n . The problem can be reduced to proving that $\iota_n : \pi_n(|\Lambda V^n|) \rightarrow \pi_n(\Lambda V^n)$ is an isomorphism.

When $n \geq 2$, this can be obtained by realizing the diagonal map

$$\Delta : \Lambda V^n \rightarrow \Lambda(V^n \oplus V^n) = \Lambda V^n \otimes \Lambda V^n,$$

which gives

$$|\Delta| : |\Lambda V^n \otimes \Lambda V^n| = |\Lambda V^n| \times |\Lambda V^n| \rightarrow |\Lambda V^n|.$$

The induced map on π_n then shows that ι_n is a group morphism.

The case $n = 1$ is more complicated as π_1 is non-abelian. We need to construct a homotopy between the representatives.

Group morphism. Use the quotient map $\Lambda V \rightarrow \Lambda V^{\geq n}$, the inclusion $\Lambda V^n \rightarrow \Lambda V^{\geq n}$, and the naturality of ι_n . The problem can be reduced to proving that $\iota_n : \pi_n(|\Lambda V^n|) \rightarrow \pi_n(\Lambda V^n)$ is an isomorphism.

When $n \geq 2$, this can be obtained by realizing the diagonal map

$$\Delta : \Lambda V^n \rightarrow \Lambda(V^n \oplus V^n) = \Lambda V^n \otimes \Lambda V^n,$$

which gives

$$|\Delta| : |\Lambda V^n \otimes \Lambda V^n| = |\Lambda V^n| \times |\Lambda V^n| \rightarrow |\Lambda V^n|.$$

The induced map on π_n then shows that ι_n is a group morphism.

The case $n = 1$ is more complicated as π_1 is non-abelian. We need to construct a homotopy between the representatives.

Proposition

- ① Given a relative Sullivan algebra $(\Lambda V \otimes \Lambda Z, d)$, the realizations $|\Lambda Z| \rightarrow |\Lambda V \otimes \Lambda Z| \rightarrow |\Lambda V|$ form a fiber bundle.
- ② Given a product of Sullivan algebras $(\Lambda V, d) \otimes (\Lambda Z, d)$, its realization is $|\Lambda V| \times |\Lambda Z|$.

Idea of proof.

First show that $\langle \Lambda Z \rangle \rightarrow \langle \Lambda V \otimes \Lambda Z \rangle \rightarrow \langle \Lambda V \rangle$ form a simplicial fiber bundle.

Theorem

The Lie bracket on the homotopy Lie algebra $L = s^{-1} \text{Hom}(V, \mathbb{Q})$ of ΛV is same as the Whitehead product on $\pi_(|\Lambda V|)$ up to sign.*

For $\alpha \in \pi_1(|\Lambda V|)$, $\beta \in \pi_n(|\Lambda V|)$,

$$\iota_n(\beta \bullet \alpha) = \text{Ad}(\iota_1(\alpha))^{-1}(\iota_n(\beta)),$$

where $\text{Ad}(\exp_{L_0} x)(y) = e^{ad x}(y)$ and $(ad x)(y) = [x, y]$ for $x, y \in L$.

In particular, when $n = 1$,

$$\iota_1(\beta \bullet \alpha) = \iota_1(\alpha^{-1})\iota_1(\beta)\iota_1(\alpha).$$

When $m_{|\Lambda V|}$ is a quasi-isomorphism

Theorem

$m_{|\Lambda V|}$ is a quasi-isomorphism if ΛV is *simply-connected* ($V^1 = 0$) and of *finite type*, i.e. such ΛV is a model of its realization.

Remark. When ΛV is simply-connected,
 $H^*(\Lambda V)$ is of finite type $\implies \Lambda V$ has finite type.

Idea of proof.

1. Reduce to the case ΛV being minimal.

ΛV can be written as $\Lambda W \otimes \Lambda(U \oplus dU)$, where ΛW is minimal. Then $H^*(\Lambda W) = H^*(\Lambda V)$. On the other hand, it can be proved that $|\Lambda(U \oplus dU)|$ is contractible.

When $m_{|\Lambda V|}$ is a quasi-isomorphism

Theorem

$m_{|\Lambda V|}$ is a quasi-isomorphism if ΛV is *simply-connected* ($V^1 = 0$) and of *finite type*, i.e. such ΛV is a model of its realization.

Remark. When ΛV is simply-connected,
 $H^*(\Lambda V)$ is of finite type $\implies \Lambda V$ has finite type.

Idea of proof.

1. Reduce to the case ΛV being minimal.

ΛV can be written as $\Lambda W \otimes \Lambda(U \oplus dU)$, where ΛW is minimal. Then $H^*(\Lambda W) = H^*(\Lambda V)$. On the other hand, it can be proved that $|\Lambda(U \oplus dU)|$ is contractible.

2. Consider the case $V = V^n$.

Then $|\Lambda V| = K(\mathbb{Q}^{\dim V}, n)$. Let ΛW be the minimal Sullivan model. As proved earlier, $W = W^n$ and $\pi_n(|\Lambda V|) = \text{Hom}(W^n, \mathbb{Q})$. So $V^n \cong W^n$ and $\Lambda V \cong \Lambda W$.

3. Consider the case $V = V^{\leq n}$.

Use induction. Suppose that the statement holds for $n - 1$. Then there exists the following commutative diagram.

$$\begin{array}{ccccc} \Lambda V^{} & \longrightarrow & \Lambda V = \Lambda V^{} \otimes \Lambda V^n & \xrightarrow{pr} & \Lambda V^n \\ \simeq \downarrow & & \downarrow & & \simeq \downarrow \\ A_{PL}(|\Lambda V^{}|) & \longrightarrow & A_{PL}(|\Lambda V|) & \longrightarrow & A_{PL}(|\Lambda V^n|) \end{array}$$

So the middle vertical map is also a quasi-isomorphism.

2. Consider the case $V = V^n$.

Then $|\Lambda V| = K(\mathbb{Q}^{\dim V}, n)$. Let ΛW be the minimal Sullivan model. As proved earlier, $W = W^n$ and $\pi_n(|\Lambda V|) = \text{Hom}(W^n, \mathbb{Q})$. So $V^n \cong W^n$ and $\Lambda V \cong \Lambda W$.

3. Consider the case $V = V^{\leq n}$.

Use induction. Suppose that the statement holds for $n - 1$. Then there exists the following commutative diagram.

$$\begin{array}{ccccc} \Lambda V^{} & \longrightarrow & \Lambda V = \Lambda V^{} \otimes \Lambda V^n & \xrightarrow{pr} & \Lambda V^n \\ \simeq \downarrow & & \downarrow & & \simeq \downarrow \\ A_{PL}(|\Lambda V^{}|) & \longrightarrow & A_{PL}(|\Lambda V|) & \longrightarrow & A_{PL}(|\Lambda V^n|) \end{array}$$

So the middle vertical map is also a quasi-isomorphism.

4. Consider the general case.

For each fixed n , $\Lambda V = \Lambda V^{\leq n+1} \otimes \Lambda V^{>n+1}$. The composition of $m_{|\Lambda V^{\leq n+1}|} : \Lambda V^{\leq n+1} \rightarrow A_{PL}(|\Lambda V^{\leq n+1}|)$ and $A_{PL}(|\Lambda V^{\leq n+1}|) \rightarrow A_{PL}(|\Lambda V|)$ can be factored through some minimal relative Sullivan algebra $\Lambda V^{\leq n+1} \otimes \Lambda W$ quasi-isomorphic to $A_{PL}(|\Lambda V|)$. So we have the commutative diagram.

$$\begin{array}{ccccc} \Lambda V^{\leq n+1} & \xhookrightarrow{\quad} & \Lambda V^{\leq n+1} \otimes \Lambda W & \xrightarrow{\quad pr \quad} & \Lambda W \\ \simeq \downarrow & & \simeq \downarrow & & \downarrow \\ A_{PL}(|\Lambda V^{\leq n+1}|) & \longrightarrow & A_{PL}(|\Lambda V|) & \longrightarrow & A_{PL}(|\Lambda V^{>n+1}|) \end{array}$$

Then ΛW is a minimal Sullivan model of $|\Lambda V^{>n+1}|$. As $|\Lambda V^{>n+1}|$ is $(n+1)$ -connected, we have $W = W^{>n+1}$. Thus,

$$H^n(|\Lambda V|) = H^n(\Lambda V^{\leq n+1} \otimes \Lambda W) = H^n(\Lambda V^{\leq n+1}) = H^n(\Lambda V).$$

path-connected spaces

minimal Sullivan model
(homology information)

realization
(homotopy information)

minimal Sullivan algebras

When both objects are **simply-connected** and have **finite type (rational) cohomology**, the two functors are **inverse** to each other, up to equivalence.

Equivalence for spaces: connected by maps preserving rational cohomology (also rational homotopy when simply-connected).

Equivalence for minimal Sullivan algebras: isomorphism.

Infinite dimensional case

Question. When does the realization preserve cohomology?

Theorem

Let ΛV be a simply connected minimal Sullivan algebra. Then ΛV is a model of $|\Lambda V|$ if and only if V has finite type.

Idea of proof.

If $\dim V^2 = \infty$, the dimension of

$$H_2(|\Lambda V|; \mathbb{Q}) = \pi_2(|\Lambda V|) = \pi_2(\Lambda V) = \text{Hom}(V^2, \mathbb{Q})$$

has a larger cardinality than $\dim V^2$. As $H^2(|\Lambda V|; \mathbb{Q})$ is the dual of $H_2(|\Lambda V|; \mathbb{Q})$, its dimension has an even larger dimension. So

$$H^2(|\Lambda V|; \mathbb{Q}) \neq H^2(\Lambda V).$$

For the general case, consider the smallest n such that $\dim V^n = \infty$.

Question. When does the realization preserve cohomology?

Theorem

Let ΛV be a simply connected minimal Sullivan algebra. Then ΛV is a model of $|\Lambda V|$ if and only if V has finite type.

Idea of proof.

If $\dim V^2 = \infty$, the dimension of

$$H_2(|\Lambda V|; \mathbb{Q}) = \pi_2(|\Lambda V|) = \pi_2(\Lambda V) = \text{Hom}(V^2, \mathbb{Q})$$

has a larger cardinality than $\dim V^2$. As $H^2(|\Lambda V|; \mathbb{Q})$ is the dual of $H_2(|\Lambda V|; \mathbb{Q})$, its dimension has an even larger dimension. So

$$H^2(|\Lambda V|; \mathbb{Q}) \neq H^2(\Lambda V).$$

For the general case, consider the smallest n such that $\dim V^n = \infty$.

Question. When does the realization preserve cohomology?

Theorem

Let ΛV be a simply connected minimal Sullivan algebra. Then ΛV is a model of $|\Lambda V|$ if and only if V has finite type.

Idea of proof.

If $\dim V^2 = \infty$, the dimension of

$$H_2(|\Lambda V|; \mathbb{Q}) = \pi_2(|\Lambda V|) = \pi_2(\Lambda V) = \text{Hom}(V^2, \mathbb{Q})$$

has a larger cardinality than $\dim V^2$. As $H^2(|\Lambda V|; \mathbb{Q})$ is the dual of $H_2(|\Lambda V|; \mathbb{Q})$, its dimension has an even larger dimension. So

$$H^2(|\Lambda V|; \mathbb{Q}) \neq H^2(\Lambda V).$$

For the general case, consider the smallest n such that $\dim V^n = \infty$.

Proposition (Z. 2024)

Let ΛV be a minimal Sullivan algebra. If some $H^n(\Lambda V)$ is infinite dimensional, then ΛV cannot be a model of $|\Lambda V|$.

Remark. This include the case that $\dim V^n$ is uncountable for some n . The case that V is not of finite type but $H^*(\Lambda V)$ is more complicated. When such ΛV is a model of $|\Lambda V|$ remains open.

Definition

A **Sullivan space** X is a path-connected space X such that

- (i) $\dim H^1(X; \mathbb{Q})$, $\dim H^k(\tilde{X}; \mathbb{Q}) < \infty$ for $k \geq 2$, where \tilde{X} is the universal cover of X .
- (ii) $\pi_k(X) \otimes \mathbb{Q} \cong \pi_k(\Lambda V)$ for $k \geq 2$, where ΛV is the minimal Sullivan model of X .

Properties of Sullivan spaces

Consider the following spaces.

X : a connected CW complex.

$B = B\pi_1(X)$: the classifying space of $\pi_1(X)$.

MB : the space of (Moore) paths on B .

$X \times_B MB$: the fiber product of the canonical $X \rightarrow B$ which is identity on π_1 and the fibration $MB \rightarrow B$. It is homotopy equivalent to X .

F : the fiber of $X \times_B MB \rightarrow B$. It is simply connected and weak homotopy equivalent to \widetilde{X} .

Applying Serre spectral sequence, we have that $H^1(B) \rightarrow H^1(X \times_B MB)$ is isomorphic and $H^2(B) \rightarrow H^2(X \times_B MB)$ is injective.

Take $\Lambda V^1 \otimes \Lambda W^{\geq 2}$ the minimal Sullivan model of B . Then it can be extended to a model $\Lambda V^1 \otimes \Lambda W^{\geq 2} \otimes \Lambda Z^{\geq 2}$ of $X \times_B MB$. Write this model as $\Lambda V \otimes \Lambda(U \oplus dU)$ (For degree reason, $V^1 \subset V$).

This induces the following commutative diagram.

$$\begin{array}{ccccc} \Lambda V^1 & \hookrightarrow & \Lambda V & \xrightarrow{pr} & \Lambda V^{\geq 2} \\ m_B \downarrow & & m_X \downarrow \simeq & & m_F \downarrow \\ A_{PL}(B) & \longrightarrow & A_{PL}(X \times_B MB) & \longrightarrow & A_{PL}(F) \end{array}$$

Theorem

When X is a Sullivan space, the following statement holds.

- (1) m_B is a quasi-isomorphism and $H^*(B)$ has finite type.
- (2) m_F is a quasi-isomorphism.
- (3) $\dim H^1(X) < \infty$ and $H^*(\tilde{X})$ has finite type.
- (4) $H^*(X)$ has finite type.
- (5) $\pi_1(X)$ acts on each $H^k(\tilde{X})$ nilpotently via covering transformations.

Conversely, if m_B is a quasi-isomorphism, then (2)(3), (3)(5) or (4)(5) implies that X is a Sullivan space.

When the realization is a Sullivan space

Theorem (c.f. *Rational Homotopy Theory II*)

For any minimal Sullivan algebra ΛV , the following conditions are equivalent.

- (i) $\dim H^1(\Lambda V)$ and $\dim V^i$ for $i \geq 2$ are finite dimensional, and the canonical morphism $m_{|\Lambda V|} : \Lambda V \rightarrow A_{PL}(|\Lambda V|)$ is a quasi-isomorphism.
- (ii) $|\Lambda V|$ is a Sullivan space.

Open problem (Félix-Halperin-Thomas).

If $m_{|\Lambda V|}$ is a quasi-isomorphism, must $|\Lambda V|$ be a Sullivan space?

When the realization is a Sullivan space

Theorem (c.f. *Rational Homotopy Theory II*)

For any minimal Sullivan algebra ΛV , the following conditions are equivalent.

- (i) $\dim H^1(\Lambda V)$ and $\dim V^i$ for $i \geq 2$ are finite dimensional, and the canonical morphism $m_{|\Lambda V|} : \Lambda V \rightarrow A_{PL}(|\Lambda V|)$ is a quasi-isomorphism.
- (ii) $|\Lambda V|$ is a Sullivan space.

Open problem(Félix-Halperin-Thomas).

If $m_{|\Lambda V|}$ is a quasi-isomorphism, must $|\Lambda V|$ be a Sullivan space?

Idea of proof.

Proposition

Suppose that ΛW^1 is a minimal Sullivan algebra. Then $\dim H^1(\Lambda W^1) < \infty$ if and only if $H^1(|\Lambda W^1|) < \infty$.

In this case, $m_{|\Lambda W^1|} : \Lambda W^1 \rightarrow A_{PL}(|\Lambda W^1|)$ extends to a minimal Sullivan model

$$\Lambda W^1 \otimes \Lambda Z^{\geq 2} \xrightarrow{\cong} A_{PL}(|\Lambda W^1|),$$

and $\dim H^1(\Lambda W^1) = H^1(|\Lambda W^1|)$.

By this proposition, that either (i) or (ii) holds implies $\dim H^1(\Lambda V) < \infty$. So the minimal model of $|\Lambda V^1|$ is of the form $\Lambda V^1 \otimes \Lambda Z^{\geq 2}$. This gives a minimal relative Sullivan algebra $\Lambda V^1 \otimes \Lambda Z^{\geq 2} \otimes \Lambda U^{\geq 2}$ which is a model of $|\Lambda V|$, and the following commutative diagram.

$$\begin{array}{ccccc} \Lambda V^1 \otimes \Lambda Z^{\geq 2} & \xhookrightarrow{\quad} & \Lambda V^1 \otimes \Lambda Z^{\geq 2} \otimes \Lambda U^{\geq 2} & \xrightarrow{\quad pr \quad} & \Lambda U^{\geq 2} \\ \psi \downarrow \simeq & & \phi \downarrow \simeq & & \bar{\phi} \downarrow \\ A_{PL}(|\Lambda V^1|) & \longrightarrow & A_{PL}(|\Lambda V|) & \longrightarrow & A_{PL}(|\Lambda V^{\geq 2}|) \end{array}$$

$m_{|\Lambda V|}$ can be lifted through ϕ rel ΛV^1 . That is, there exists a morphism $\beta : \Lambda V \rightarrow \Lambda V^1 \otimes \Lambda Z^{\geq 2} \otimes \Lambda U^{\geq 2}$ such that $\phi \circ \beta \sim m_{|\Lambda V|}$ and their restrictions to ΛV^1 are same.

This induces the commutative diagram below.

$$\begin{array}{ccccc}
 \Lambda V^1 & \hookrightarrow & \Lambda V & \xrightarrow{pr} & \Lambda V^{\geq 2} \\
 \downarrow \lambda & & \downarrow \beta & & \downarrow \gamma \\
 \Lambda V^1 \otimes \Lambda Z^{\geq 2} & \hookrightarrow & \Lambda V^1 \otimes \Lambda Z^{\geq 2} \otimes \Lambda U^{\geq 2} & \longrightarrow & \Lambda Z^{\geq 2} \otimes \Lambda U^{\geq 2} \\
 \downarrow \psi \simeq & & \downarrow \phi \simeq & & \downarrow \rho \\
 A_{PL}(|\Lambda V^1|) & \longrightarrow & A_{PL}(|\Lambda V|) & \xrightarrow{A_{PL}(|pr|)} & A_{PL}(|\Lambda V^{\geq 2}|) \\
 & & & \searrow & \downarrow \bar{\phi} \\
 & & & & \Lambda U^{\geq 2}
 \end{array}$$

On the other hand, as $m_{\langle \Lambda V \rangle} : \Lambda V \rightarrow A_{PL}(\langle \Lambda V \rangle)$ is a natural transformation, the following diagram is commutative up to homotopy. This homotopy can be made rel ΛV^1 .

$$\begin{array}{ccc}
 \Lambda V & \xrightarrow{pr} & \Lambda V^{\geq 2} \\
 m_{|\Lambda V|} \downarrow & & \downarrow m_{|\Lambda V^{\geq 2}|} \\
 A_{PL}(|\Lambda V|) & \xrightarrow{A_{PL}(|pr|)} & A_{PL}(|\Lambda V^{\geq 2}|)
 \end{array}$$

Thus,

$$m_{|\Lambda V^{\geq 2}|} \circ pr \sim \bar{\phi} \circ \rho \circ \gamma \circ pr \text{ rel } \Lambda V^1.$$

This leads to

$$m_{|\Lambda V^{\geq 2}|} \sim \bar{\phi} \circ \rho \circ \gamma.$$

Now suppose (i) holds. It is sufficient to show that the commutative diagram below satisfies the following statements of the previous theorem.

$$\begin{array}{ccccc}
 \Lambda V^1 & \hookrightarrow & \Lambda V & \xrightarrow{pr} & \Lambda V^{\geq 2} \\
 m_{|\Lambda V^1|} \downarrow & & m_{|\Lambda V|} \downarrow & & m_{|\Lambda V^{\geq 2}|} \downarrow \\
 A_{PL}(|\Lambda V^1|) & \longrightarrow & A_{PL}(|\Lambda V|) & \longrightarrow & A_{PL}(|\Lambda V^{\geq 2}|)
 \end{array}$$

- (1) $m_{|\Lambda V^1|}$ is a quasi-isomorphism.
- (2) $m_{|\Lambda V^{\geq 2}|}$ is a quasi-isomorphism.
- (3) $\dim H^1(|\Lambda V|) < \infty$ and $H^*(|\Lambda V^{\geq 2}|)$ has finite type.

By hypothesis $V^{\geq 2}$ has finite type. So $m_{|\Lambda V^{\geq 2}|}$ is a quasi-isomorphism. This proves (2).

It follows that $H^*(|\Lambda V^{\geq 2}|) = H^*(\Lambda V^{\geq 2})$ is of finite type. Also by hypothesis $m_{|\Lambda V|}$ is a quasi-isomorphism. So $\dim H^1(|\Lambda V|) = \dim H^1(\Lambda V) < \infty$. This proves (3).

Fact. $\pi_1(\Lambda V^1)$ acting on $H^*(\Lambda V^{\geq 2})$ is locally nilpotent. Moreover, this action can be identified with $\pi_1(|\Lambda V^1|)$ acting on the image of $H^*(\Lambda V^{\geq 2}) \rightarrow H^*(|\Lambda V^{\geq 2}|)$ induced by $m_{|\Lambda V^{\geq 2}|}$.

Now that $m_{|\Lambda V^{\geq 2}|}$ is a quasi-isomorphism, this image is just $H^*(|\Lambda V^{\geq 2}|)$. Thus, that ψ and ϕ are quasi-isomorphisms implies that so is $\bar{\phi}$.

Then $m_{|\Lambda V^{\geq 2}|} \sim \bar{\phi} \circ \rho \circ \gamma$ implies that $\rho \circ \gamma$ is also a quasi-isomorphism. On the other hand, $\phi \circ \beta \sim m_{|\Lambda V|}$ implies that β is a quasi-isomorphism. These lead to that λ is a quasi-isomorphism. In particular, $Z = 0$.

By construction, $m_{|\Lambda V^1|} = \phi \circ \lambda$. So it is a quasi-isomorphism. This proves (1).

Suppose (ii) holds. By the Properties of Sullivan spaces, $H^*(|\Lambda V^{\geq 2}|)$ are of finite type. Then so are $\pi_*(|\Lambda V^{\geq 2}|)$ and $V^{\geq 2}$.

That $V^{\geq 2}$ is of finite type also implies that $m_{|\Lambda V^{\geq 2}|}$ is a quasi-isomorphism. Moreover, recall that the minimal model of $|\Lambda V^1|$ is of the form $\Lambda V^1 \otimes \Lambda Z^2$. $|\Lambda V|$ being a Sullivan space implies that $Z = 0$ and $m_{|\Lambda V^1|}$ is a quasi-isomorphism. It also implies that $\pi_1(|\Lambda V^1|)$ acts on $H^*(|\Lambda V^{\geq 2}|)$ nilpotently. Therefore, $m_{|\Lambda V|}$ is a quasi-isomorphism.

Finally, $|\Lambda V|$ being a Sullivan space also implies $\dim H^1(|\Lambda V|) < \infty$. Together with $m_{|\Lambda V|}$ being a quasi-isomorphism, we have that $\dim H^1(\Lambda V) < \infty$.

A Theorem for classifying space

Theorem

*If the classifying spaces BG_1 and BG_2 are Sullivan spaces, then so is the classifying space $B(G_1 * G_2)$ of the free product.*

$S^m \vee S^n$	Sullivan space?
$m, n > 1$	Yes
$m = 1, n > 1$	No
$m = n = 1$	Yes

A Theorem for classifying space

Theorem

*If the classifying spaces BG_1 and BG_2 are Sullivan spaces, then so is the classifying space $B(G_1 * G_2)$ of the free product.*

$S^m \vee S^n$	Sullivan space?
$m, n > 1$	Yes
$m = 1, n > 1$	No
$m = n = 1$	Yes

- 1 Introduction of rational homotopy theory and algebraic models
- 2 Sullivan models
- 3 Realization of minimal Sullivan algebras
- 4 Formality of sphere bundles

Definition

A CDGA is called **formal** if its **cohomology ring** serves as its model.

A topological space X is called **formal** if $A_{PL}(X)$ is a formal CDGA.

Theorem (Sullivan 1977; Halperin-Stasheff, 1979)

$A_{PL}(X)$ is formal if and only if the tensor product of $A_{PL}(X)$ and some extension field over \mathbb{Q} is formal.

Thus, a smooth manifold M is formal if and only if $\Omega^*(M)$ is formal.

(Remark. In general, equivalent CDGA over \mathbb{R} may not be equivalent over \mathbb{Q} .)

Definition

A CDGA is called **formal** if its **cohomology ring** serves as its model.

A topological space X is called **formal** if $A_{PL}(X)$ is a formal CDGA.

Theorem (Sullivan 1977; Halperin-Stasheff, 1979)

$A_{PL}(X)$ is formal if and only if the tensor product of $A_{PL}(X)$ and some extension field over \mathbb{Q} is formal.

Thus, a smooth manifold M is formal if and only if $\Omega^*(M)$ is formal.

(Remark. In general, equivalent CDGA over \mathbb{R} may not be equivalent over \mathbb{Q} .)

Examples of formal spaces.

Theorem (Deligne-Griffiths-Morgan-Sullivan, 1975)

A complex manifold where the dd^c -lemma holds is formal. In particular, all compact Kähler manifolds are formal.

Theorem (Miller, 1979)

Let X be an n -dimensional k -connected compact space. If $n \leq 4k + 2$, then X is formal.

Other formal spaces include Lie groups, H-spaces, homogeneous spaces, product of formal spaces, and wedge sum of formal spaces.

Non-formal spaces include nilmanifolds except torus.

Examples of formal spaces.

Theorem (Deligne-Griffiths-Morgan-Sullivan, 1975)

A complex manifold where the dd^c -lemma holds is formal. In particular, all compact Kähler manifolds are formal.

Theorem (Miller, 1979)

Let X be an n -dimensional k -connected compact space. If $n \leq 4k + 2$, then X is formal.

Other formal spaces include Lie groups, H-spaces, homogeneous spaces, product of formal spaces, and wedge sum of formal spaces.

Non-formal spaces include nilmanifolds except torus.

Examples of formal spaces.

Theorem (Deligne-Griffiths-Morgan-Sullivan, 1975)

A complex manifold where the dd^c -lemma holds is formal. In particular, all compact Kähler manifolds are formal.

Theorem (Miller, 1979)

Let X be an n -dimensional k -connected compact space. If $n \leq 4k + 2$, then X is formal.

Other formal spaces include Lie groups, H-spaces, homogeneous spaces, product of formal spaces, and wedge sum of formal spaces.

Non-formal spaces include nilmanifolds except torus.

Examples of formal spaces.

Theorem (Deligne-Griffiths-Morgan-Sullivan, 1975)

A complex manifold where the dd^c -lemma holds is formal. In particular, all compact Kähler manifolds are formal.

Theorem (Miller, 1979)

Let X be an n -dimensional k -connected compact space. If $n \leq 4k + 2$, then X is formal.

Other formal spaces include Lie groups, H-spaces, homogeneous spaces, product of formal spaces, and wedge sum of formal spaces.

Non-formal spaces include nilmanifolds except torus.

Questions about formality of sphere bundles

Let X be an orientable S^k -bundle over M . We naturally ask the relationship between their formalities:

1. If M is formal, when is X formal?
2. What properties of M are corresponding to the formality of X ?

Example

Let $M = T^2$ and X be a non-trivial orientable circle bundle over M . Then M is formal but X is non-formal.

Example

Let $M = S^2$ and X be an arbitrary circle bundle over M . Then both M and X are formal.

These two examples show that the answer of Question 1 is non-trivial.

Questions about formality of sphere bundles

Let X be an orientable S^k -bundle over M . We naturally ask the relationship between their formalities:

1. If M is formal, when is X formal?
2. What properties of M are corresponding to the formality of X ?

Example

Let $M = T^2$ and X be a non-trivial orientable circle bundle over M . Then M is formal but X is non-formal.

Example

Let $M = S^2$ and X be an arbitrary circle bundle over M . Then both M and X are formal.

These two examples show that the answer of Question 1 is non-trivial.

About Question 1

Theorem (Z, 2019)

If M is formal, then $\Omega^(X)$ has an A_∞ -minimal model whose only non-trivial operations are m_2 and m_3 .*

If an A_∞ -algebra has an A_∞ -minimal model with only m_2 non-trivial, then it is **formal**.

Theorem (Crowley-Nordström, 2020)

If X is a compact manifold, and the Bianchi-Massey tensor of $\Omega^(X)$ vanishes, then $\Omega^*(X)$ has an A_∞ -minimal model with $m_3 = 0$.*

Conjecture.

X is formal \iff The Bianchi-Massey tensor of $\Omega^*(X)$ vanishes.

About Question 1

Theorem (Z, 2019)

If M is formal, then $\Omega^(X)$ has an A_∞ -minimal model whose only non-trivial operations are m_2 and m_3 .*

If an A_∞ -algebra has an A_∞ -minimal model with only m_2 non-trivial, then it is **formal**.

Theorem (Crowley-Nordström, 2020)

*If X is a compact manifold, and the **Bianchi-Massey** tensor of $\Omega^*(X)$ vanishes, then $\Omega^*(X)$ has an A_∞ -minimal model with $m_3 = 0$.*

Conjecture.

X is formal \iff The Bianchi-Massey tensor of $\Omega^*(X)$ vanishes.

Bianchi-Massey Tensor

Let E^* be the space of $e \in H^*(X) \otimes H^*(X)$ satisfying

1. e is a graded symmetric tensor.
2. e is in the kernel of the multiplication map $H^*(X) \otimes H^*(X) \rightarrow H^*(X)$.

Choose an arbitrary morphism (of graded vector spaces)

$$\alpha : H^*(X) \rightarrow \Omega^*(X)$$

sending cohomology classes to representatives. There exists a morphism

$$\gamma : E^* \rightarrow \Omega^*(X)$$

of degree -1 satisfying $d\gamma = \alpha^2$, where $\alpha^2(x \otimes y) = \alpha(x) \wedge \alpha(y)$.

Bianchi-Massey Tensor

Let E^* be the space of $e \in H^*(X) \otimes H^*(X)$ satisfying

1. e is a graded symmetric tensor.
2. e is in the kernel of the multiplication map $H^*(X) \otimes H^*(X) \rightarrow H^*(X)$.

Choose an arbitrary morphism (of graded vector spaces)

$$\alpha : H^*(X) \rightarrow \Omega^*(X)$$

sending cohomology classes to representatives. There exists a morphism

$$\gamma : E^* \rightarrow \Omega^*(X)$$

of degree -1 satisfying $d\gamma = \alpha^2$, where $\alpha^2(x \otimes y) = \alpha(x) \wedge \alpha(y)$.

On a subspace of $E^* \otimes E^*$ (graded symmetric tensors, in the kernel of full symmetrization), the degree -1 morphism

$$E^* \otimes E^* \rightarrow \Omega^*(X) \quad e \otimes e' \mapsto \gamma(e)\alpha^2(e')$$

takes closed values. Thus it induces a morphism from this subspace to $H^*(X)$, and this morphism is called the **Bianchi-Massey tensor**.

Theorem (Crowley-Nordström, 2020)

The definition of Bianchi-Massey tensor is independent of the choices of α and γ .

Advantage of Bianchi-Massey tensor:

1. Calculable.
2. Rational homotopy invariant (so an obstruction of formality).

On a subspace of $E^* \otimes E^*$ (graded symmetric tensors, in the kernel of full symmetrization), the degree -1 morphism

$$E^* \otimes E^* \rightarrow \Omega^*(X) \quad e \otimes e' \mapsto \gamma(e)\alpha^2(e')$$

takes closed values. Thus it induces a morphism from this subspace to $H^*(X)$, and this morphism is called the **Bianchi-Massey tensor**.

Theorem (Crowley-Nordström, 2020)

*The definition of Bianchi-Massey tensor is **independent** of the choices of α and γ .*

Advantage of Bianchi-Massey tensor:

1. Calculable.
2. Rational homotopy invariant (so an obstruction of formality).

Main Theorem

Theorem (Z, 2025)

Let M be a compact formal manifold, and X be an orientable S^k -bundle over M . Then X is formal if and only if the Bianchi-Massey tensor of $\Omega^(X)$ vanishes.*

In particular, if k is even, then X is always formal.

A corollary about the unit tangent bundle

Corollary (Z, 2025)

Let M be a compact orientable formal manifold. X is a sphere bundle whose Euler class is the fundamental cohomology class. If X is formal, then $H^*(M; \mathbb{R}) = \mathbb{R}[x]/(x^k)$ is a quotient of the polynomial ring with a single variable, i.e.

$$H^*(M; \mathbb{R}) = \langle 1, x, x^2, \dots, x^{k-1} \rangle.$$

Corollary (Z, 2025)

Let M be a compact orientable formal manifold. Its unit tangent bundle UTM is formal if and only if one of the following statement holds.

1. The Euler characteristic $\chi(M) = 0$.
2. $H^*(M; \mathbb{R}) = \mathbb{R}[x]/(x^k)$ is a quotient of the polynomial ring with a single variable.

Example of Riemann surfaces

Consider the circle bundle over a Riemann surface M . Let $[\omega]$ denote the fundamental cohomology class of M .

genus	Euler class is $[\omega]$	unit tangent bundle
0	formal	formal
1	non-formal	formal
≥ 2	non-formal	non-formal

More General Base Manifold

Theorem (Z, 2025)

Suppose (M, ω) is a symplectic manifold satisfying the *hard Lefschetz property*, and X is a circle bundle over M with Euler class $[\omega]$. If $[\omega]$ is *reducible* in $H^2(M)$, then X cannot be formal.

Here reducible means $[\omega] \in H^1(M) \cdot H^1(M)$, i.e. there exist $x_i, y_i \in H^1(M)$ such that

$$[\omega] = \sum x_i \wedge y_i.$$

Hard Lefschetz property means that for a $2n$ -dimensional symplectic manifold, the following map is an isomorphism.

$$\omega^k : H^{n-k}(M) \xrightarrow{\cong} H^{n+k}(M), \quad x \mapsto [\omega^k] \wedge x.$$

A Slightly Weaker Restriction

The hard Lefschetz property can be replaced by a weaker statement: Let $\omega \in H^{4r+2}(M)$, and there exists some $s \geq 0$ such that

1. $\omega : H^s(M) \rightarrow H^{s+4r+2}(M)$ is an isomorphism.
2. $\omega : H^{s-2r-1}(M) \rightarrow H^{s+2r+1}(M)$ is injective.

In this case the reducibility of $[\omega]$ is replaced by

$$[\omega] \in H^{2r+1}(M) \cdot H^{2r+1}(M).$$

Then the sphere bundle whose Euler class is $[\omega]$ is **non-formal**.

Remark.

That the degree of ω is $4r+2$ is necessary. There exist a counterexample for the case of $4r+4$. Let $M = \mathbb{C}P^2$ and $\omega \in \Omega^4(M)$ be its volume form. The above requirements are satisfied but the sphere bundle is formal.

A Slightly Weaker Restriction

The hard Lefschetz property can be replaced by a weaker statement: Let $\omega \in H^{4r+2}(M)$, and there exists some $s \geq 0$ such that

1. $\omega : H^s(M) \rightarrow H^{s+4r+2}(M)$ is an isomorphism.
2. $\omega : H^{s-2r-1}(M) \rightarrow H^{s+2r+1}(M)$ is injective.

In this case the reducibility of $[\omega]$ is replaced by

$$[\omega] \in H^{2r+1}(M) \cdot H^{2r+1}(M).$$

Then the sphere bundle whose Euler class is $[\omega]$ is **non-formal**.

Remark.

That the degree of ω is $4r+2$ is necessary. There exist a counterexample for the case of $4r+4$. Let $M = \mathbb{C}P^2$ and $\omega \in \Omega^4(M)$ be its volume form. The above requirements are satisfied but the sphere bundle is formal.